173 research outputs found

    Nonlinear frequency response curves estimation and stability analysis of randomly excited systems in the subspace framework

    Get PDF
    In this paper, the periodic solutions of nonlinear mechanical systems are studied starting from the nonlinear state-space model estimated using the nonlinear subspace identification (NSI) technique. In its standard form, NSI needs the input-output data from a nonlinear structure undergoing broadband excitation and requires the prior knowledge of the locations and kind of nonlinearities to be estimated. The method allows the estimation of the nonlinear features of the system and the indirect study of its periodic solutions using a single broadband excitation, without the need of feedback control loops. To this end, the nonlinear frequency response curves of the system are estimated merging the harmonic balance method with the NSI technique and using a continuation approach. Then, a monodromy-based stability analysis is developed in the nonlinear state-space framework to study the stability of the periodic solutions of the system and to track its bifurcations. The method is validated considering conservative nonlinearities on two numerical examples and one experimental application, the latter comprising a double-well oscillator with period-doubling phenomena. The effects of noise and nonlinear modeling errors are also evaluated

    Identification of a Duffing Oscillator under Different Types of Excitation

    Get PDF
    In many engineering applications the dynamics may significantly be affected by nonlinear effects, which must be accounted for in order to accurately understand and robustly model the dynamics. From a practical point of view, it is very important to solve theinverse problemrelated to system identification and output prediction. In this paper the recently developed Nonlinear Subspace Identification (NSI) method is presented and applied to an oscillator described by the Duffing equation, with different types of excitation including random forces, which are demonstrated to be very suitable for the identification process. The estimates of system parameters are excellent and, as a consequence, the behaviour of the system, including the jump phenomena, is reconstructed to a high level of fidelity. In addition, the possible memory limitations affecting the method are overcome by the development of a novel algorithm, based on a specific computation of the QR factorisation

    Best parameter choice of Stochastic Resonance to enhance fault signature in bearings

    Get PDF
    Stochastic Resonance (SR) is a phenomenon studied and exploited for telecommunication, which permits the detection and amplification of weak signals by the assistance of noise. The first papers on this topic date back to the early 80s and were developed to explain some periodic natural phenomena. Other applications are in neuroscience, biology, medicine and, obviously, mechanics. Recently, a few researchers have tried to apply this technique for detecting faults in mechanical systems and also bearings. In this paper we discuss the best way to select the parameters to augment the performance of the algorithm. This is probably the main drawback of SR, since in system identification the procedure should be as blind as possible to be efficient and widely applicable. The classical bi-stable potential form is adopted in our study, with three parameters to be selected. Based on numerical tests, a characteristic trend of the amplification factor has been found with respect to the parameters variation, so that a general rule is consequently determined which gives the best performances in terms of detection and amplification. The SR algorithm is tested on both simulated and experimental data showing a good capacity of increasing the signal to noise ratio

    Nonlinear Dynamics of a Duffing-Like Negative Stiffness Oscillator: Modeling and Experimental Characterization

    Get PDF
    In this paper, a negative stiffness oscillator is modelled and tested to exploit its nonlinear dynamical characteristics. The oscillator is part of a device designed to improve the current collection quality in railway overhead contact lines, and it acts like an asymmetric double-well Duffing system. Thus, it exhibits two stable equilibrium positions plus an unstable one, and the oscillations can either be bounded around one stable point (small oscillations) or include all the three positions (large oscillations). Depending on the input amplitude, the oscillator can exhibit linear and nonlinear dynamics and chaotic motion as well. Furthermore, its design is asymmetrical, and this plays a key role in its dynamic response, as the two natural frequencies associated with the two stable positions differ from each other. The first purpose of this study is to understand the dynamical behavior of the system in the case of linear and nonlinear oscillations around the two stable points and in the case of large oscillations associated with a chaotic motion. To accomplish this task, the device is mounted on a shaking table and it is driven with several levels of excitations and with both harmonic and random inputs. Finally, the nonlinear coefficients associated with the nonlinearities of the system are identified from the measured data

    A time-varying inertia pendulum: Analytical modelling and experimental identification

    Get PDF
    In this paper two of the main sources of non-stationary dynamics, namely the time-variability and the presence of nonlinearity, are analysed through the analytical and experimental study of a time-varying inertia pendulum. The pendulum undergoes large swinging amplitudes, so that its equation of motion is definitely nonlinear, and hence becomes a nonlinear time-varying system. The analysis is carried out through two subspace-based techniques for the identification of both the linear time-varying system and the nonlinear system. The flexural and the nonlinear swinging motions of the pendulum are uncoupled and are considered separately: for each of them an analytical model is built for comparisons and the identification procedures are developed. The results demonstrate that a good agreement between the predicted and the identified frequencies can be achieved, for both the considered motions. In particular, the estimates of the swinging frequency are very accurate for the entire domain of possible configurations, in terms of swinging amplitude and mass positio

    An illustration of new methods in machine condition monitoring, Part I: Stochastic resonance

    Get PDF
    There have been many recent developments in the application of data-based methods to machine condition monitoring. A powerful methodology based on machine learning has emerged, where diagnostics are based on a two-step procedure: extraction of damage sensitive features, followed by unsupervised learning (novelty detection) or supervised learning (classification). The objective of the current pair of papers is simply to illustrate one state-of the-art procedure for each step, using synthetic data representative of reality in terms of size and complexity. The first paper in the pair will deal with feature extraction. Although some papers have appeared in the recent past considering stochastic resonance as a means of amplifying damage information in signals, they have largely relied on ad hoc specifications of the resonator used. In contrast, the current paper will adopt a principled optimisation-based approach to the resonator design. The paper will also show that a discrete dynamical system can provide all the benefits of a continuous system, but also provide a considerable speed-up in terms of simulation time in order to facilitate the optimisation approach

    An Illustration of New Methods in Machine Condition Monitoring, Part II: Adaptive outlier detection

    Get PDF
    There have been many recent developments in the application of data-based methods to machine condition monitoring. A powerful methodology based on machine learning has emerged, where diagnostics are based on a two-step procedure: extraction of damagesensitive features, followed by unsupervised learning (novelty detection) or supervised learning (classification). The objective of the current pair of papers is simply to illustrate one state-ofthe-art procedure for each step, using synthetic data representative of reality in terms of size and complexity. The second paper in the pair will deal with novelty detection. Although there has been considerable progress in the use of outlier analysis for novelty detection, most of the papers produced so far have suffered from the fact that simple algorithms break down if multiple outliers are present or if damage is already present in a training set. The objective of the current paper is to illustrate the use of phase-space thresholding; an algorithm which has the ability to detect multiple outliers inclusively in a data set

    Fault diagnosis of wind turbine gearboxes through on-site measurements and vibrational signal processing

    Get PDF
    Condition monitoring of wind turbine gearboxes has attracted an impressive amount of attention in the wind energy literature. This happens for practical issues, as gearbox damages account for at least the 20% of wind turbines operational unavailability, and for scientific issues as well, because the condition monitoring of gear-based mechanical systems undergoing non-stationary operation is particularly challenging. The present work is devoted to the diagnosis of gearbox damages through a novel approach, designed exclusively for this study, based on on-site measurements and data post-processing. The main point of this method is the relatively easy repeatability, also for wind turbine practitioners, and its low impact on wind turbine operation: actually, the measuring site is not the gearbox itself, but the tower, further from the gearbox but in an easily accessible place. A real test case has been considered: a multi mega-watt wind turbine sited in Italy and owned by the Renvico company. The vibration measurements at the wind turbine suspected to be damaged and at a reference wind turbine are processed through a multivariate Novelty Detection algorithm in the feature space. The application of this algorithm is justified by univariate statistical tests on the time-domain features selected and by a visual inspection of the dataset via Principal Component Analysis. Finally, the novelty indices based on such time-domain features, computed from the accelerometric signals acquired inside the turbine tower, prove to be suitable to highlight a damaged condition in the wind-turbine gearbox, which can be then successfully monitored
    • …
    corecore